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THE EFFECT OF NON-LINEARITTES ON

OPTICAL CORREIATION PROCESSING
Abstract

This paper presents a method of analytically determining the effect
of internal non-linearities on the output of a coherent optical correlator
operated as a matched filter. Such a device employs photographic_ trans-
parencies or other media for the representation of the reference and signal
functions. These include distortions due to the non-linearities of the
processes involved.

The effect of the distortions on the output correlation functions is
derived using a Taylor series expansion of the non-linearities. Three

representative examples are considered to demonstrate the effect numerically.



THE EFFECT OF NON-LINEARITIES ON
OPTICAL CORRELATION PROCESSING

I. Introduction

A Coherent optical correlator may be described in simple terms as an
optical system consisting of a collimated coherent light source, a series of
lenses which repeatedly transform amplitude distributions in one plane into
their Fourier transforms in the following plane, transparency holders in the
various image planes, and a series of detectors transversely distributed along
a vertical line in the center of the terminal plane. Figure 1. shows a basic
configuration of such a system. For more details reference is made to a
description of a commercially available system I:l] . By this system, cross-
correlation propessing can be carried out simultaneously for signal distribu-
tions in the horizontal direction in a number of channels distributed in the
vertical direction.

Usually the assumption is made that the optical processes are linear so
that the optical operations can be described by relationships as they are
used for linear processing in electronic correlators. This assumption is not
right away evident since non-linearities usually are more pronounced in optical
systems than in the corrésponding electronic devices. As a consequence the
question arises to which extent these non-linearities will affect the operations
in optical correlators. The question has two aspects, namely: (1) will
undesired but practically unavoidable non-linearities make correlation processing
inferior to other methods of filtering and (2) can requirements with regard to
linearity be relaxed if the effects of non-linearities in processing are

negligibly small.



: -2- .. .
Various sources mey introduce non-linearities in the optical system. '
First, transparencies for the reference signal will not be an exact reproduction

of the original signal. Two possible sources account for these distortions.

The non-linear characteristics of the film including photo processing [2]
represent one of these and the non-linear relationship between the output of
the light source and the electric signal in producing the transparency is the
other. Secondly, non-linearities resulting from the same sources may be present
in the reproduction of the object signal. The non-linearities of the reference
function and the signal function may be the same if they are produced by
identical reproduction methods or they may be different. Additional sources

of non-linearities are the detectors in the terminal plane. These last effects

will be of minor concern at this time, though, since they may be compensated

for by appropriate linearizing circuitry.

II. Model of a Non-Linear Processing System

For studying the effects of non-linearities on correlation processing, the
following model will be used: All non-linearities introduced in the operations
of transforming an electrical signal into an optical reference function given by
the amplitude transmittance of the reference transparency will be lumped together.
They are described by a characteristic curve which interrelates the amplitude
transmittance and the electric reference signal which is usually the transmitted
telemetry signal for a particular channel. A second characteristic curve will
describe the transformation of the received telemetry signal including noise
into a signal-function transparency.

Assuming a model of this type, the basic question becomes: What are the
deviations of the « crosscorrelation functions obtained by optical processing

if the reference and signal functions of the respective transparencies become
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non-~linear replicas of the corresponding electric sig }s. Based on this
model, the .g¥gsscorrelation integral of the reference and signal functions
will be determined where these functions are considered as output functions
of non-linear circuit elements which are described by characteristic curves.
The non-linearity of the characteristic curves is taken into account as an

approximation by a Taylor series.

ITI. Essential Equations

Figure 2 shows & sample characteristic curve relating the output of a
specific non-linear process to its input. We may consider the input signal
represented by a varisble y which veries about y, and is limited to the region
bétween Vmin and Ymax Assuming that both f(y) and its derivatives are
continuous at y, we may write a Taylor series expansion of this function which
will converge to f(y) in this region. Since the series is convergent, we may
in practical spplications approximate f(y) by the first several terms of this
expansion., The Taylor series is written

/ F”(%o) a
x=F(4) = F(do) + F—f—f‘i)(g-m) e (9-90)

TF’,,(ﬁb)
3

* .

(9=90)* + ¢= - (V)

where the primes denote differentiation with respect to y. To simplify the

notation we write

/ £7(4.)
Qo= (3s) )q|='€_;(.ﬂlfé )q = =1 ete.,

since these quentities are characteristic constants of the particular process

being considered. Iletting

(3"50) = S(;") J



Lo
we have

x=F4)=a,+a,SE)+a, S¥)+a ;¥ (&)+---  (2)

Using this technique, we can describe the actual optical signal existing
in a portion of the correlator in terms of the input signal S(z) and the
non-linearities of the particular component being studied. Repeated use of

this procedure can be made in order to describe the performance of the system.

IV. Application to a Correlator

We will now consider a correlator as described in section I. for

processing a signals of the form

Sn(2) = A cos nz, (3)

where the factor n may take on various integer values and where A is a
normalized amplitude. The correlator is to operate as a matched filter,

thus both the reference and signal transparencies will contain replicas of
Sn(z). Ideally the reference and signal transparencies would have the signals
recorded on them in a linear manner. For correlation filtering the reference
transparency would contain a complete set of the reference functions, one in
each channel, while the signal transparency would contain the received input
signal only, in the form of a one-dimensional distribution of density. Due,
however)to the non-linearities and biasing problems involved in producing the
transparencies, the various signals will be modified. We will describe the
processes of converting the signals Sn(z) into the reference and signal trans-
parencies by means of the non-linear model introduced in the preceding sections.
Accordingly we may write for the light amplitudes leaving the references trans-

parency



’Rn(i’-) = Qe * Q, Sn(?:> + Q. Si(”-‘) + 033?\(1'-)

+a, SK(B)+-- (4)

where the factors a, represent the coefficients of the Taylor series expansion

n
of the characteristic curve of the reference transparency. Similarly we write
for the signal transparency.
S, {2)=bo+ b S, (2)+ b, Su(E) +b; Sn(%)
+ b, SW(&)+-- (5)
For the signal transparency, the subscript m replaces n. Substituting

expression (3) into (4) and (5) and expanding the various powers of the cosine

function (see appendex) yields

_ a. A" Za,A* 3as A’
?n(i)_ (ao+ 2'2. +38¢A )'I-(Q\A* —T—)C‘OS nz

a,A*  a.AY as A2
+( =2— -
( 5~ + =4 )cos 2nz + 3+A cos 3InzE

+ 44A4
8

COS &ANZd--r

and

Sm(E)= (bo+ ‘1-’?@; 72_%_5.‘.“ « (b A~ §—b—i—ﬁf)Cos mZ

2 4 3
+(b—’£~+ bi—f-) cos amz + S3AT o0 swe
4

« baat

8 CosS AME 4 ve-,

In order to simplify these expressions,we define

3
= (a°+ 411A2+ 344A*) 5 r (a'A“' 34_43_-:‘._) ) etc.

8

J

2 + IbsA®
So= (bot22A , 3BeAY) g s (p A 122 ) e,
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so that we may write
Ra(2) = ro+¥ Cosn2 + v, Cos 2% +Y; Cos 3nz + ¥, Cos 4nz+- (€)

Su(2)=Ss+S,Cos ke +S2Co32m2 + 530S INT 5, cosamB L (T)

In the following discussion we shall consider only the first five terms of
these expressions. The correlator then performs optically the operation of
corss-correlation on the reference and signal functions (6) and (7). This
operation may be written as

... () =—]s (2+07) Ru(2) A2 (8)

mn -Va

Where T is the aperture length of the correlator. We will assume for simplicity
that T is such that it is an integer number of periods of each signal in the set.
Under these conditions there will be a corss-correlation between a term of
Rn(z) and one of Sm(z) only when they are of the same spatial frequency. For
& given value of n there will be many values of m for which this is the case,

but we will consider only 5 of these which typify the effect. These are:
(b,m(o-)]mzh/‘_ 2 Y So+ \lis—‘-' cosno,
cpm(o-)jmu,; VoSot 022 cosno + ”3__.5_5.1 cos 2no” 4,
4"“"(0"31»\:»: VoSo+ Q2L cosno + r,:z <o 2n O

+ vaS3
Z

¢W\w(°-)jw\=2w VoSo + -"T-‘- cos 2no + =% cog 4n0o,

-
Cbmn(o'lﬂm- o So + 47.'. cos 4no . (‘l)

Note that expression C (where both frequencies are equal) corresponds to the

case of the signal being detected. The other expressions correspond to "mixing"
and erroneous 'present" indications in the various channels. In the following
section we shall investigate quantitatively the various terms of these correlation

functions Egs. (9)



V. Examples

‘ In an actual optical correlator many different schemes can be used for the
production of signal and reference transparencies. TIn this section we will
treat three examples which are representative of the wvarious alternatives
available. One of these will be the linear case which will also serve as a
reference in comparing the results of the non-linear caseS. In each example
the input signal to the photographic process will be normalized so that the
amplitude transmittance of the final transparencies will vary approximately
between .2 and .8. This being chosen so as to eliminate fogging and saturation
effects of the emulsions. This will be accomplished by appropriately adjusting
the constant "A" in equation (3) for each case. In each case it will be assumed
that the signal and reference transparencies are produced by identical photo~-
graphic processes. Thus their Taylor series coefficients will be identical in

each example

Case 1. Positive Processing, Linear Characteristic

Here we asgsume that the original signal is reproduced linearly and positive.
This might be accomplished in two ways. If the electrical-light modulator used
in producing the transparency is linear with respect to light amplitude, controlling
of the photographic processing to attain a total garma of 1.0 will result in a
linear characteristic curve for the combined processes. If the electrical-liéht
modulation is linear with respect to light intensity (such as a spot intensity
modulation of a CRT) then a gamma value of 2.0 in the photographic processing
will again yield a linear "characteristic'". Figure 3 presents such a curve.

For this case

Su(z)=.3 cos nz .
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Expanding the curve x = y in a Taylor series about x = .S(yO = .5) we obtain
‘l' Qo= .5, QA,=1.0, A3=0 )
QAz=0, A4=0.

Correspondingly the coefficients of the reference and signal transparencies

become

Vo=So= .5, V125, 5.3, 228, =0,

kz.‘.‘-ss:o_) Y4=S4,= Q.

The optical reference and signal functions are then
¢

RX2)= .5 +.3 cos uz,

sM(z)= .5 +-3 cosmz,

where the superscript (1) indicates that the: functions are valid for case 1.
The correlation functions obtained in section IV Egs (9) become

0) =
IM'»\.(O-)]\M:M. .25 +.04% cos no,

¢&)v\. (G)]M#V\,: 25

We thus observe that, in this case, there is no effect similar to "mixing" in

non-linear electronic circuits.

Case 2: Square-Law Characteristic, Positive Processing

This case is presented primarily to determine the sensitivity of the
correlation processing to variations in the gamma product of the developing
process. If for instance the electrical-light modulator is linear with respect
to light amplitude but the transparencies are developed with a gamma product

of 2.0)a characteristic curve such as is shown in figure 4. will result.

' Here:

Sk(%) 2,25 cos W,
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The coefficients of the Taylor series for x = y2 gbout x = .5 (yo = .707) are
Gp=.5,A, =14 ,Q,=1.0,
Qg:o) q4=o)

and the reference and signal transparency coefficients become

rozso?.S'SJ r,_:s,,'s.o’s_, Yao=8,=0

TH

rhn=5,=.3¢ , ra=53= O

Then the optical reference and signal functions are
2
’R(w>(2'3= SI3+. 36 cos w2 +. 03 Ccos 2nE )

S(?-)(-%‘)- 3 +.3C coswmE +.03 cos amz.
M -

The correlation functions become

(2, | = 28 +.,06 COs WO +.0004.CO0S 2Nno-
w (G)]w:w . 8 )

S, <o-nwy- .28 +.00€ 203 no,

cpfia (CrJ:Iv*~ {3-*— 00§ cCos .QVWCT'

<1)(2) (' b:] = (20 ( 3~}‘“' ry .2 .

Case 3: Negative Processing

This case is considered since a considerable simplification of the
photographic processing results when the signal may be represented as a negative.
Figure 5 presents a characteristic curve that would result if the electrical-
light modulator would be linear in light amplitude and the negative would be

processed to a gamma of 1.0. Accordingly

fE;,L (55') = . €3 COoS W% ,



The Taylor series coeffieients for x = y~+ about x = .5 (yo = 2,0) are
qo:.'s) d‘z ".zs) sz.\S)

dzz-.Oé)Q4=’.03.

The reference and signal transparency coefficients then become
YB:SO -§4) \’"25;

Finally we have for the optical reference and signal functions

QE)(%)=.S'4-.20 COSWVNWZET.O|l cO0s 2N
- +e002A CcosSINZET+_.0000F cos 4 N2

SE?(%):.SWK»-.ZO cos mZ + 0 €os 2wz

- 002 <05 3M 2 + 000079 cos4m &

The correlation integrals are

¢S) (cr)] = ,29 +.02 cos nG +-Sx10"% cos auo
" WS W

+.2%10" 8 cosINT +.4%10"8 cgs 40O 5

q;f:i(o.)]h_:w_zﬂ -, 00l Cos RO +,4%x0"¢ cos 2w o,
=W/

" -¢
4),(3) (G‘)]uin: 293 -.06\ €08 2rnO + . 4x%107° OS5 4no7,
Y =

D (o5 n.T 2T = TR107C 03 nom,

(3) - —. 4 x167% cos 4wo,
¢w~(cbjw=4w -29 *



VI. Conclusions

A method was derived for the consideration on non-linearities in ccrrelatioﬁ
processing. The method is based on describing the non-linearities of the signal
and reference functions of the transparencies by their corresponding Taylor
series coefficients. This permits computation of the correlation functions. A
summary of the results of considering three representative cases, namely for
linear, quadratic, and inverse characteristics is shown in Table 1.

The entries in the table are the correlation functions according to
Eq. (8). The subscripts mn indicate the spatial frequencies of the signal
and reference functions respectively. The frequency ratios considered in
section IV and shown in the first column are 1/4, 1/2, 1, 2, and 4. The
correlation functions for the three cases in the corresponding columns contain
four types of terms. First there are the D.C. terms which are of minor interest
since they can be eliminated by a D.C. stop or by adjustment of D.C. levels of
the output detectors. There are then three types of terms varying with sigma.
The ideal (linear) correlator will have an output varying with sigma only
when m = n. This occurs in case one. Any harmonic term varying with sigma
when m # n corresponds to an error term indicating "mixing" between channels.
The terms of the fourth type appear as harmonic distortions for m = n but these’
do not affect the correlator operation. The ratio of the amplitudes of the
error terms to the sigma varying terms for m = n is then an indication of the
detrimental effect of the non-linearities. We observe from Table 1 that
although considerable non=linearities exist in the cases 2 and 3, this ratio
remains below 0.1 in both cases. The correlation process thus tends to minimize
the non-linear effects. Consequently, if a correlator is being operated in
high signal-to-noise-ratio with only one signal processed at a time (time
multiplex), the non-linear effects are negligible. In such cases it may be

possible to relax the requirements with regard to linearity and to simplify
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photographic processing by using negative transparencies (case 3). If,
however, the processor has to detvect the presence of one of a number of
signals received simultaneously, or is to cperate in a large-noisé environ-
ment, the effect of non-linearities may become appreciable. Under such

conditions linear processing becomes desirable.
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APPENDIX

A. Expansion of powers of cos ©

cos2 @ = 1/2 (1 + cos 20)

cos3 0 = 1/4 (3 cos & + cos 36)

cost & = 1/8 (3 + UL cos 20 + cos 46)

cos> © = 1/16 (10 cos © + 5 cos 36 + cos 560)

cosb @ = 1/32 (10 + 15 cos 26 + 6 cos 46 + cos 60)



BIBLIOGRAPHY

[1] Instruction Manual for the C-100 Cross Correlator Conductron Corporation,
Ann Arbor, Michigan.

[2] A. R. Shulman: Principles of Optical Data Processing for Engineers.
Report No. X-521-66-U43L Goddard Space Flight Center, Greenbelt, Maryland.



